
Information-Theoretic Approach to Detect Collusion in Multi-Agent Games

Trevor Bonjour, Vaneet Aggarwal, Bharat Bhargava
Purdue University

West Lafayette, Indiana 47906
tbonjour@purdue.edu, vaneet@purdue.edu, bbshail@purdue.edu

Abstract
Collusion in a competitive multi-agent game occurs when two
or more agents co-operate covertly to the disadvantage of oth-
ers. Most competitive multi-agent games do not allow players
to share information and explicitly prohibit collusion. In this
paper, we present a novel way of detecting collusion using a
domain-independent information-theoretic approach. Specif-
ically, we show that the use of mutual information between
actions of the agents provides a good indication of collusive
behavior. Our experiments show that our method can detect
varying levels of collusion in repeated simultaneous games
like iterated Rock Paper Scissors. We further extend the de-
tection to partially observable sequential games like poker
and show the effectiveness of our methodology.

1 Introduction
Recently, there has been growing interest in developing
mechanisms to train agents to co-operate in multi-agent
games (Tampuu et al. 2017; Jaques et al. 2019; Celli et al.
2019). Many multi-agent games, however, do not allow co-
operation between players. Collusion in a competitive multi-
agent game occurs when two or more agents co-operate
covertly, often to the detriment of others. Collusion poses a
major threat (Yampolskiy 2008; Yan 2003; Yan and Randell
2005) in competitive multi-agent games since the general
assumption is that the players play to maximize their utility
and it is often impossible to prevent some forms of collusion
(Smed, Knuutila, and Hakonen 2006), especially in online
settings. Detecting collusion in real-time is a difficult task as
it often requires discerning and understanding a player’s mo-
tivation. For this reason, collusion detection usually happens
post-hoc. (Yan 2010) motivates the need to design automatic
solutions to detect collusion from historical game records.

In this work, we propose a novel information-theoretic ap-
proach to detect collusion amongst players given a sequence
of records over several games. We use the game records
to inform us about the strategies of different players across
multiple games. We hypothesize that when two players col-
lude, the effect they have on each other’s strategies would be
larger than if they were not colluding. This forms the basis
of our collusion detection method. We formally describe our
approach in Section 3. To evaluate our method, we conduct

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proof of concept experiments for perfect information simul-
taneous games and imperfect information sequential games.
To test collusion detection for these games, we develop en-
vironments for a three-player iterated Rock Paper Scissors
and three-player Leduc Hold’em poker. We show that our
method can successfully detect varying levels of collusion in
both games. We also report accuracy and swiftness (Smed,
Knuutila, and Hakonen 2007) of our detection algorithm for
different scenarios.

Collusion can take many forms. (Smed, Knuutila, and
Hakonen 2006) provide a classification of different forms
of collusion that can take place among players. For multi-
agent games, they define three types of collusion: specta-
tor collusion, assistant collusion, and association collusion.
In spectator collusion, a spectating player provides impor-
tant information to their colluding partner. For example, in
the first-person shooter game Counter-Strike, a dead player
can move around in ghost mode and provide information
about the location of other players. Assistant collusion is
one in which the colluding partner doesn’t aim to win but
assists another player gain an advantage. For example, in
Monopoly, a player could buy properties that prevent the
non-colluding player from gaining a complete set of colored
properties. A complete set of colored properties is required
to collect rent from other players. Association collusion is
where colluding players are in a symbiotic relationship such
that each partner plays to benefit the other. For instance, in
poker, colluding partners play more aggressively when ei-
ther of them has a good hand, and play cautiously otherwise.
We focus on detecting collusion between active players in
the game since it is improbable that data on spectators of the
game is collected.

To the best of our knowledge, there is no publicly avail-
able data set for multi-agent games with known collusion
among players. For this reason, we design hand-crafted col-
lusion strategies for our experiments. We develop strategies
for assistant collusion in iterated Rock Paper Scissors and
association collusion in Leduc Hold’em poker. We show that
our proposed method can detect both assistant and associa-
tion collusion. Apart from rule-based collusion, we use Deep
Reinforcement Learning (Arulkumaran et al. 2017) tech-
niques to automatically construct different collusive strate-
gies for both environments. Our method can successfully
detect collusion in all scenarios. We summarize our contri-

butions as follows:

• We propose a novel information-theoretic approach to
detect collusion (Section 3) in multi-agent games from
historical game records.

• We develop rule-based colluding agents for multi-agent
environments: three-player iterated Rock Paper Scissors
(Section 5.1) and three-player Leduc Hold’em poker
(Section 5.2). We generate automatic collusion between
agents using Deep Reinforcement Learning.

• Our experiments show that the collusion detection
method can detect different forms and multiple levels of
collusion for fully observable simultaneous and partially
observable sequential games (Section 5).

2 Background
2.1 Multi-Agent Markov Games
In this work, we consider a multi-agent extension of Markov
decision processes (MDPs) called Markov games (Littman
1994). We consider the scenario where multiple games are
played between n agents, for example, in a tournament set-
ting. We restrict ourselves to scenarios where we have two
colluding partners playing against other agents. Thus, we
only consider settings where n > 2. The state of the en-
vironment is given by s ∈ S, where S is the set of all pos-
sible states. At each timestep t, an agent i selects an action
ait ∈ A, where A is the set of all possible actions. The ac-
tions of all n agents are combined to form a joint action
at = [a0t , . . . a

n
t]. Each agent receives a reward rit(at, st).

A history of these values over time is termed as a trajec-
tory, τ = {st,at, rt}. Solving an MDP yields a policy
π : S → A, which is a mapping from states to actions.

2.2 Mutual Information
Mutual information I(X;Y) of two discrete random vari-
ables (X,Y) ∼ p(x, y) is defined as:

I(X;Y) =
∑
x∈X
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

For discrete random variables (X,Y, Z) ∼ p(x, y, z), the
conditional mutual information I(X;Y |Z) between X and
Y given Z is defined as:

I(X;Y |Z) =
∑
z∈Z

p(z)I(X;Y |Z = z) (2)

3 Approach
Ideally, if all agents compete, their policies for a given state
of the environment would be independent of each other. In
practical scenarios, however, the policy of one agent might
influence the policy of another agent. In the case where two
agents collude, their individual influence on each other’s
policy would be larger than that of a non-colluding agent.
We use this intuition as the basis of our collusion detection
method. We define individual influence (γ), as the influence
that one agent’s policy has on the other. We define net influ-
ence (Γ) as the difference in the individual influence of one

agent and the maximum individual influence other agents
have on the said agent.

Suppose we have n agents and a set of their state-action
pairs for a fixed number of game episodes, then the the net
influence, Γ(i; j), of i ∈ n on j ∈ n is defined as:

Γ(i; j) = γ(i; j)− max
k∈n
k ̸=i,j

γ(k; j) (3)

γ(i; j) denotes the individual influence of agent i’s policy
on agent j’s policy.

To get the second term on the right-hand side of Equa-
tion (3), we calculate the individual influence on j of all the
other agents in n, that are not i or j and take the maximum
value. For collusion to occur, both agents should have a pos-
itive net influence on each other. We say there is collusion
between agents i and j if:

Γ(i; j) and Γ(j; i) ≥ α (4)

where α is the collusion threshold.
From the state-action pairs we can construct the empirical

policy matrix for the agents. π : S → A is a S × A matrix
where each element gives the probability of taking an action
a ∈ A in a given state s ∈ S. πi represents the policy matrix
for agent i and πj represents the policy matrix for agent j.
Each element of πi and πj give p(ai|si) and p(aj |sj). We
define sij as the joint state of agent i and agent j. The joint
policy πij gives a mapping from the joint state to probability
of taking actions ai, aj ∈ A for a given joint state sij . Each
element of πij gives p(ai, aj |sij). To measure the individ-
ual influence of i on j, we need to capture how different
the joint policy πij is from πiπj . In other words, individ-
ual influence captures how different the joint policies of the
two agents are from what it would be if they were indepen-
dent. If the two policies were independent, we would have
p(ai, aj |sij) = p(ai|si)p(aj |sj). To capture this difference
between the distributions, we use the concept of conditional
mutual information. We have:

γ(i; j) =
∑

sij∈Sij

p(sij)
∑

ai∈Ai

aj∈Aj

p(ai, aj |sij) log p(ai, aj |sij)
p(ai|si)p(aj |sj)

(5)

3.1 Fully Observable Simultaneous Games
In a fully observable environment, the observed state is com-
mon to all agents: sij = si = sj = s. Equation (5) thus
becomes:

γ(i; j) =
∑
s∈S

p(s)
∑

ai∈Ai

aj∈Aj

p(ai, aj |s) log p(ai, aj |s)
p(ai|s)p(aj |s) (6)

=
∑
s∈S

p(s)
∑

ai∈Ai

p(ai|s)
∑

aj∈Aj

p(aj |ai, s) log
p(aj |ai, s)

p(aj |s)
(7)

Effectively, for a fixed state s, the individual influence pro-
vides a measure of the difference between the probability of
agent j selecting an action aj given the state s and ai (agent

i’s action), and the probability of agent j selecting the action
aj given the state s. In other words, it measures how the ac-
tions of i affect the actions of j. For a simultaneous game,
all agents take an action at the same time. Since there is no
sequence in which the individual agents take an action, the
individual influence is symmetric: γ(i; j) = γ(j; i). Note
that Γ(i; j) ̸= Γ(j; i). For net influence Γ(i; j) we have

Γ(i; j) = γ(i; j)− max
k∈n
k ̸=i,j

γ(k; j) (8)

= γ(j; i)− max
k∈n
k ̸=i,j

γ(k; j) (9)

and for net influence Γ(j; i) we have:

Γ(j; i) = γ(j; i)− max
k∈n
k ̸=i,j

γ(k; i) (10)

= γ(i; j)− max
k∈n
k ̸=i,j

γ(k; i) (11)

Note that even though the first term on the right-hand side
in Equation (10) is the same as in Equation (9), the second
terms are different. In the first case, the second term denotes
the maximum individual influence of other agents on agent
j, while in the second case it denotes the maximum individ-
ual influence of other agents on agent i.

3.2 Partially Observable Sequential Games
For partially observable games, each agent’s observed state
is different: si ̸= sj . Thus, to calculate the individual in-
fluence, we use Equation (5) directly. In sequential games,
unlike simultaneous games, there is an order in which the
agents take an action. Suppose we have two agents i and j,
where i’s turn happens before j’s turn. Now when i makes
a move, this information is available to j before j makes a
move. Along with capturing the effect of one agent’s action
on the other, the individual influence in the partially observ-
able sequential case also captures the effect of having access
to the joint state as compared to only having access to the in-
dividual state. Note that since this is a sequential game, the
individual influence will not be symmetric: γ(i; j) ̸= γ(j; i).
This is because when calculating the individual influence we
need to take into account the sequence in which the actions
were taken. When calculating γ(i; j), we need to consider
only the cases where action aj is executed after action ai in
a game. Similarly, for γ(j; i) we need to consider only the
cases where action ai is executed after action aj in a game.

4 Collusion Detection Algorithm
We can state the collusion detection problem as: Given a
sequence of m game records for n agents, we need to de-
termine if two players collude and return the colluding pair.
Each game record consists of a sequence of tuples (state,
actions, reward) from the sequence of actions performed by
the agents during a game. We give the main steps of the pro-
cedure in Algorithm 1. The first step for our algorithm is to
construct a policy matrix πi for each agent i ∈ n from these
records. To construct πi, we need to estimate p(ai|si). We
use a hash table to implement the Monte Carlo method (MC)

for estimating the distributions accurately.For p(ai|si), we
have:

p(ai|si) ≡ N(ai, si)

N(si)
(12)

where (ai, si) is the number of times the action-state pair
(ai, si) occur in the data and N(si) is the total number of
times the agent visits state si.

Algorithm 1: Collusion Detection for Multi-Agent Games

1: Input: Game m record tuples ¡a, s, r¿ for n agents and
collusion threshold α

2: Output: Colluding pair if any.
3: Initialize n× n matrix I ▷ for pair-wise individual

influence
4: Initialize n× n matrix N ▷ for pair-wise net influence
5: Initialize count← 0 ▷ count of colluding pairs
6: Initialize c1, c2← −1 ▷ index of colluding agents
7: for i = 1 : n do ▷ Construct policy matrix for each

agent
8: Construct πi ▷ from Equation (12)
9: end for

10: for i = 1 : n do ▷ Construct joint policy matrix pair of
agents

11: for j = 1 : n do
12: if i ̸= j then
13: Construct πij , πji ▷ from Equation (13)
14: I[i, j]← γ(i; j) ▷ from Equation (5)
15: I[j, i]← γ(i; j) ▷ from Equation (5)
16: end if
17: end for
18: end for
19: for i = 1 : n do ▷ Calculate net influence
20: for j = 1 : n do
21: if i ̸= j then
22: N [i, j]← Γ(i; j) ▷ from Equation (3)
23: N [j, i]← Γ(i; j) ▷ from Equation (3)
24: end if
25: end for
26: end for
27: for i = 1 : n do
28: for j = 1 : n do
29: if N [i, j] ≥ α and N [j, i] ≥ α then
30: count← count+ 1
31: c1← i
32: c2← j
33: if count > 1 then
34: return No Collusion
35: end if
36: end if
37: end for
38: end for
39: if count == 1 then
40: return c1, c2
41: else
42: return No Collusion
43: end if

The next step is to construct the joint policy matrix for ev-

ery pair of agents i, j ∈ n. We use MC sampling to calculate
p(ai, aj |sij). We have:

p(ai, aj |sij) ≡ N(ai, aj , si, sj)

N(si, sj)
(13)

where N(ai, aj , si, sj) is the number of times (ai, aj , si, sj)
occur in the data. Note that for sequential games, the order-
ing of ai and aj matters. When calculating N(ai, aj , si, sj)
and N(si, sj), we only consider cases where agent j takes
an action after agent i.

Once the policy matrices are constructed we calculate and
store the pair-wise individual influence γ(i; j) for i, j ∈ n
for every pair of agents using Equation (5). The next step
is then to calculate the net influence Γ(i; j) for i, j ∈ n for
every pair of agents using Equation (3). If for exactly one
pair of agents the net influence on each other exceeds the
collusion threshold α (Equation (4)), we say there is collu-
sion and return the colluding agents, otherwise, we return
that collusion could not be detected.

5 Experiments
5.1 Rock Paper Scissors
For the fully observable simultaneous game, we consider a
three-player version of iterated Rock Paper Scissors (RPS)
where we have all the three players pick an action from ei-
ther Rock(R), Paper(P) or Scissors(S) at each timestep. As
in the common version of the game, we have R beats S, S
beats P , and P beats R. The payoffs for the three-player
version we consider are decided according to the following
rules:

1. If all three actions are the same, each player receives a 0.
2. If all three actions are distinct, each player receives a 1.
3. If there are 2 distinct actions, in the set of actions se-

lected, the winning action is decided according to the
general rule stated above. All winners get one point each.

The payoff matrix for the three-player Rock, Paper,
Scissors is given in Table 1.

Manual Collusion: We implement a simple assistant
collusion tactic for the three-player iterated RPS. As
described in Section 1, this form of collusion involves a
primary colluding agent and a secondary colluding assistant
that selects an action that benefits the primary agent. Fig-
ure 1 gives a graph representation of assistant collusion for
the fully observable simultaneous game. The solid arrows
depict the information directly accessible to each agent. st
denotes the state of the environment at time t and ait, a

j
t

and akt denote the action taken by agents i, j and k at time
t respectively. The dashed arrow depicts the covert flow of
information between the colluding agents i and j, with i
being the primary agent and j being the colluding assistant.

For RPS, we can see from Table 1, whenever player 1
chooses R and player 2 chooses S, regardless of what action
player 3 selects, player 1 always gets a point. In this sce-
nario, player 1 is the primary colluding agent and player 2 is
the colluding assistant. We assume that there is some form

Player 3 plays Rock(R)
Player 2

R P S

R (0, 0, 0) (0, 1, 0) (1, 0, 1)

Player 1 P (1, 0, 0) (1, 1, 0) (1, 1, 1)

S (0, 1, 1) (1, 1, 1) (0, 0, 1)

Player 3 plays Paper(P)
Player 2

R P S

R (0, 0, 1) (0, 1, 1) (1, 1, 1)

Player 1 P (1, 0, 1) (0, 0, 0) (0, 1, 0)

S (1, 1, 1) (1, 0, 0) (1, 1, 0)

Player 3 plays Scissors(S)
Player 2

R P S

R (1, 1, 0) (1, 1, 1) (1, 0, 0)

Player 1 P (1, 1, 1) (0, 0, 1) (0, 1, 1)

S (0, 1, 0) (1, 0, 1) (0, 0, 0)

Table 1: Payoff matrix for three-player Rock Paper Scissors.

Figure 1: Assistant Collusion for fully observable simulta-
neous game.

of ex-ante coordination or signaling that takes place between
the colluding partners to carry out the collusion. We have the
following three players for the manual case:

1. Player A : Primary colluding agent.
2. Player B : Assistant colluding agent.
3. Player C : Non-colluding agent.

Player A and Player C choose an action at random. Player
B chooses an action that guarantees A a point with some
collusion probability, and a random action otherwise. In a
practical setting, the colluding partners may not collude on
every move to avoid suspicion. The collusion probability
(CP) governs the probability of active collusion, e.g. if
CP = 0.4, the assistant plays a move that benefits the
primary agent for 40% of the games and plays a random
move for the other 60% games. In the case of RPS, we
note that the higher the CP , the higher the win rate for the
primary colluding agent.

Automatic Collusion: To test our method on other collu-
sion strategies, we train the players to learn to collude au-
tomatically. For this, we make use of Deep Reinforcement
Learning. Specifically, we treat the two colluding players as
a single agent, with a joint state and action space. We utilize

the Double Deep Q-Network (DDQN)(Van Hasselt, Guez,
and Silver 2016) for training. The agent receives a reward of
+1 if one of the colluding players wins and a -1 if the non-
colluding player wins. We have the following three players
for automatic collusion:

1. Player D : Auto-colluding agent.
2. Player E : Auto-colluding agent.
3. Player F : Non-colluding agent. This agent selects an

action uniformly at random from valid actions.

For all the experiments collusion threshold is set at 0.05.

Experiment 1: For the first experiment we attempt to
answer the question: How does collusion strength affect the
swiftness or sample complexity of our detection algorithm?
We use data generated from games played between Players
A, B, and C (manual collusion). We run multiple simula-
tions for a different number of games (sample size) and
varying levels of collusion probability values. We plot the
calculated net influence for different settings in Figure 2.
Each graph in the figure is generated for the different CP
values. The y-axis gives the net influence values and the
x-axis gives the number of games used to calculate the net
influence values. The dashed horizontal line in each graph
depicts the collusion threshold α which is set at 0.05. Note
that, as the CP values go higher, our algorithm can detect
collusion using data from fewer games. However, we also
note that we are not able to detect collusion for the case
where CP = 0.1, irrespective of the sample size. This
implies that there exists a minimum collusion strength, only
over which our algorithm can detect collusion.

We plot the net influence values calculated from data
generated from 1000 games for varying levels of collusion
probabilities in Figure 3. The y-axis gives the net influence
values for all pairs of players and the x-axis gives the CP
values. We note that we can detect collusion in cases where
the collusion probability is over 0.2. From Figure 3, we
observe that as the level of collusion between players A and
B strengthens, the net influence they have on each other also
increases. This indicates that the value of the net influence
could possibly indicate the level of collusion.

Experiment 2: For the second experiment, we determine the
collusion detection accuracy (CDA) of our method for vary-
ing levels and different forms of collusion. We generate data
for a different number of games for both manual and auto-
matic collusion cases. For the manual case with data gen-
erated for games played between players A, B, and C, we
vary the CP values as we did for the first experiment. For
the automatic case, we generate data from games between
players D, E, and F. To get a robust measure of the CDA, we
run 1000 iterations per number of games. The CDA gives
the percentage of iterations that the algorithm can detect the
collusion correctly. We report the results in Table 2. The first
column gives the number of game records used to detect col-
lusion. The second and the third column gives the CDA for
two of the manual cases (CP = 0.3 and CP = 0.4) and the
fourth column gives the CDA values for the automatic case.

Number
of Games

Manual CDA (%)
(CP = 0.3)

Manual CDA (%)
(CP = 0.4)

Automatic
CDA (%)

50 21.9 31.2 48.6
100 37.1 58.4 81.5
200 48.3 79.2 93.2
250 63.5 90.0 97.5
300 71.0 96.2 98.1
350 77.5 98.6 98.8
400 82.8 99.3 98.9
450 88.0 99.8 98.4
500 89.6 99.7 99.4
550 93.4 100 99.3
600 94.6 99.9 99.2
650 96.8 100 99.8
700 97.8 100 99.2
750 98.1 100 99.3
800 98.8 100 99.7
850 99.3 100 100
900 99.4 100 99.9
950 99.8 100 99.6

1000 100 100 99.9

Table 2: Collusion Detection Accuracy for Rock Paper Scis-
sors across different number of games.

For CP = 1, we only require data from 60 games to get
a CDA of 100%. For CP = 0.2, we get a CDA of 24.3%
for 1000 games. We generated data from 10000 games to
see how that affects the CDA. We get a CDA of 82.3 for the
manual case where CP = 0.2. This shows that given enough
samples, we can detect collusion even for cases where the
strength of collusion is low. However, we only get a CDA of
≈ 8% on average for the case where CP = 0.1, again im-
plying that there exists a minimum collusion strength below
which our algorithm is unable to detect collusion with high
probability.

5.2 Leduc Hold’em Poker
To test our method for partially observable sequential
games, we consider a three-player version of Leduc
Hold’em poker (Southey et al. 2012). Leduc Hold’em poker
is a simpler variant of poker played with a deck of six cards
with three ranks and two suites. For our implementation,
we use the ace, king, and queen. At the beginning of the
hand, each player antes one chip and is dealt with a private
(or hole) card. Following this, there is a round of betting
known as the pre-flop betting round. After the first betting
round, another card is dealt face-up as a community (or
board) card. There is a two-bet maximum per round. The
raise size is set at two chips for the pre-flop and four chips
for the post-flop betting round. If a player’s hole card is the
same rank as the board card, they win the pot; otherwise,
the player whose private card has the higher ranked card
wins the pot. The players are rotated at the end of each
hand. Each game goes on for nine rotations, with each
player getting to be the dealer thrice. The player positions
are shuffled at random before the beginning of each game.

Manual Collusion: We develop two colluding agents
that follow an association collusion strategy. Recall that
an association collusion strategy is one in which both the

Figure 2: Net influence calculated for a different number of games for varying values of collusion probability (CP) for Rock
Paper Scissors.

Figure 3: Net influence for varying collusion probabilities
(CP) over 1000 games of Rock Paper Scissors.

colluding partners are in a symbiotic relationship and play
to each other’s advantage. Figure 4 shows a graph repre-
sentation of association collusion in a partially observable
sequential game. st denotes the state of the environment
at time t and sit, s

j
t , and skt denote the observed states for

each agent i, j, and k respectively. ait, a
j
t and akt denote the

actions taken by agents i, j, k at time t respectively. Note
that t depicts one instance of the game, e.g. one round in
poker. There is a sequential order (i → j → k) in which
the players are allowed to make their moves. As stated
in Section 3.2, each player has access to the information
about the actions of the preceding players. The dashed line

Figure 4: Association Collusion for partially observable se-
quential game.

depicts information being shared covertly. In Figure 4, we
see that agents i and j are the colluding partners. We see
that i has access to the observed state of agent j which
has a direct effect on their action choice. The same can
be observed for j. We assume that the colluding partners
exchange hidden information covertly or use some form
of ex-ante coordination or signaling. For the three-player
Leduc Hold’em environment, we develop rule-based agents
that have access to the private card of the colluding partner.
In the first round, if either of the colluding partners has an
ace, both agents raise. In the second round, if either of the
colluding partners has a pair or an ace, both agents raise. In
all other circumstances, the agents call, if possible. A player
only folds if they don’t have enough chips to call.

Automatic Collusion: For automatic collusion, we develop
two collusion strategies - high payoff (HP) and low payoff
(LP). For HP, as the name suggests, we train the agents to
maximize the payoff they receive at the end of a game of
poker. On the other hand, for LP, we train the agents to keep
the payoff as close to zero as possible. We use the same
method we did for RPS to generate collusion. For training,
we treat both colluding partners as a single agent with a
joint state and action space. For HP, agents receive a reward
of zero during the game and a reward of the sum of the loss
or profit each individual player makes at the end of a hand.
For LP, the agents receive a reward of zero during the game
and a penalty for straying from a net-zero payoff. We train
the agents using DDQN for 10000 games played against an
agent that chooses their actions at random. The LP collusion
strategy emulates players that may be colluding, but the
colluding strategy itself may not yield a high payoff. Such
collusion would be almost impossible to detect if we were
to only look at the payoffs.

We have the following players for Leduc Hold’em:

1. Players A1, A2 and A3 : Non-colluding random agents.
This agent selects an action uniformly at random from
valid actions.

2. Player B1, B2 and B3 : Non-colluding rule-based
agents. This agent raises if they have an ace or a king
in the first round and raises only if they have a pair in
the second round. For all other cases, the agent selects a
random action.

3. Players C1 and C2 : Associate colluding agents.
4. Players D1 and D2 : LP auto-colluding agents.
5. Players E1 and E2 : HP auto-colluding agents.

For all the experiments collusion threshold is set at 0.05.

Experiment 1: For the first experiment we generate data
for 1000 games of Leduc Hold’em poker for different
player combinations. The different player combinations
we use are given in the first column of Table 3. The first
four rows show the results for the case where there is no
collusion between players. The last six rows show results
for settings where two of the players are colluding. We
report the average payoff per game for two of the players
in the second column. Please note that the orderings of the
players as given in the table has no bearing on the results.
As stated earlier, we shuffle the player positions before
each game and each game consists of 9 rotations. We report
the pair-wise net influence of players in Table 3. Recall
from Equation (4), when the net influence that two players
have on each other exceeds the collusion threshold, we say
that the two players are colluding. The values (≥ 0.05) for
which our method detects collusion are given in bold. We
note that our method can successfully detect collusion in all
colluding scenarios even in cases where the payoff may be
negligible.

Players
(P1, P2, P3)

Avg. Payoff
(P1, P2)

Γ(P1;P2)
Γ(P2;P1)

Γ(P3;P2)
Γ(P2;P3)

Γ(P1;P3)
Γ(P3;P1)

A1, A2, A3 0.0472 0.0032
-0.0033

0.0025
-0.0032

-0.0025
0.0033

B1, A1, A2 1.3874 -0.0424
0.0026

0.0425
0.0424

-0.0425
-0.0026

B1, B2, A1 2.3701 -0.0761
-0.0740

0.0032
0.0761

-0.0032
0.0740

B1, B2, B3 0.0324 0.0001
0.0011

0.0011
-0.0001

-0.0011
-0.0011

C1, C2, A1 3.9513 0.1133
0.1168

0.0008
-0.1133

-0.0008
-0.1168

C1, C2, B1 1.3302 0.1213
0.1204

0.0012
-0.1213

-0.0012
-0.1204

D1, D2, A1 2.3963 0.4913
0.3829

0.0487
-0.4913

-0.0487
-0.3829

D1, D2, B1 0.0374 0.6808
0.6797

0.0912
-0.6808

-0.0912
-0.6797

E1, E2, A1 8.4340 0.2108
0.3916

0.0605
-0.2108

-0.0605
-0.3916

E1, E2, B1 6.5372 0.5504
0.5856

0.0314
-0.5504

-0.0314
-0.5856

Table 3: Net influence values for different levels of collusion
for Leduc Hold’em.

Experiment 2: We run the second experiment to determine
the CDA and the swiftness of our method. Swiftness indi-
cates the number of game records needed to detect collusion
with high probability. Recall, CDA gives the percentage of
iterations that the algorithm was able to detect the collusion
correctly. To check the swiftness, we generate data for a dif-
ferent number of games and run the detection algorithm. To
get a robust measure, we run 1000 iterations per number of
games. We generate data for association, LP-auto, and HP-
auto collusion for two cases: against a random agent (Player
A1) and against the rule-based agent (Player B1).

We report the results in Table 4 and Table 5. Since each
game of Leduc Hold’em poker consists of multiple rotations,
we also report the number of hands in the data used for test-
ing. Note that for the second case (against Player B1), we
change the number of rotations per game to three since the
CDA was over 95% for 40 games with nine rotations per
game for all cases.

From Table 4, we see that we require data from 200 games
(or 1800 hands) to get an accuracy of over 95% for associ-
ation collusion, but only require data from 120 games (or
1080 hands) to achieve the same detection accuracy for both
forms of automatically generated collusion. We believe this
is because the strength of collusion is stronger in the auto-
matic cases as compared to the hand-crafted rule-based case.
We saw in Section 5.1 that the values of net influence could
be an indication of the strength of collusion. We see from Ta-
ble 3 that the manual association collusion setting (Players
C1, C2, A1) has the lowest net influence values. We believe
this could be why it requires more samples to get a high
CDA when compared to the other two cases.

6 Related Work
Over the years, collusion detection has been studied ex-
tensively across multiple domains. Majority of the litera-
ture focuses on collusion detection in auctions and cartel

Number
of Games

Number
of Hands

Manual
CDA (%)

LP-Auto
CDA (%)

HP-Auto
CDA (%)

20 180 0.0 56.8 58.4
40 360 0.10 67.8 78.3
60 540 1.53 82.8 89.6
80 720 6.81 90.2 96.7

100 900 19.0 97.8 97.3
120 1080 41.1 98.8 97.9
140 1260 62.8 99.3 98.3
160 1440 78.3 99.9 98.6
180 1620 88.8 100 99.5
200 1800 93.6 100 99.6
220 1980 96.9 100 99.8
240 2160 98.2 100 99.8
260 2340 99.2 100 99.9
280 2520 99.4 100 99.9
300 2700 99.9 100 100

Table 4: Collusion Detection Accuracy (CDA) for Leduc
Hold’em for different number of games when played against
random non-colluding agent (Player A1).

identification in bidding (Hendricks and Porter 1989; Porter
and Zona 1993; Schurter 2017; Wachs and Kertész 2019).
(Hendricks and Porter 1989), (Porter and Zona 1993) and
(Schurter 2017) identify collusive bids in auctions. (Wachs
and Kertész 2019) presents a network-based framework to
detect potential cartels in bidding markets. (Hespanhol and
Aswani 2020) formulate the problem of tacit collusion in
algorithmic pricing as an inverse variational inequality and
design a hypothesis test to detect collusion.

Stock market trading is another domain where collusion
detection has been studied extensively (Palshikar and Apte
2008; Madurawe et al. 2021; Islam et al. 2009; Cao et al.
2016). Most of these methods utilize clustering techniques
to detect collusion. (Islam et al. 2009) propose a Markov
clustering algorithm, (Palshikar and Apte 2008) use multi-
ple graph clustering algorithms and (Madurawe et al. 2021)
combine anomaly detection with graph clustering to detect
collusion sets in trading data. (Cao et al. 2016) find collusive
cliques using directed graphs and dynamic programming.

There has been some work done in detecting collusion in
other online settings such as crowd-sourcing tasks (Khud-
aBukhsh, Carbonell, and Jansen 2014; Chen et al. 2020)
and online rating systems (Allahbakhsh et al. 2013). The au-
thors in (KhudaBukhsh, Carbonell, and Jansen 2014) present
methods for detecting non-adversarial collusion by analyz-
ing the similarity of workers’ answers while (Chen et al.
2020) propose a collusion detection method based on the
statistical test of the consistency of workers’ answers across
different crowd-sourcing tasks. In (Allahbakhsh et al. 2013),
the authors propose a collusion detection algorithm for on-
line ratings based on clustering techniques.

Collusion detection in multi-agent games has been previ-
ously studied in (Mazrooei, Archibald, and Bowling 2013;
Laasonen and Smed 2015; Yampolskiy 2008; Hamilton
2011; VanderKnyff et al. 2009). However, most of these ap-
proaches focus on providing a solution for a specific type
of game. (Hamilton 2011) construct interaction graphs be-

Number
of Games

Number
of Hands

Manual
CDA (%)

LP-Auto
CDA (%)

HP-Auto
CDA (%)

20 60 54.2 95.2 94.6
40 120 76.4 98.6 96.3
60 180 82.5 99.6 98.7
80 240 89.1 100 99.6

100 300 93.4 100 100
120 360 97.0 100 100
140 420 97.4 100 100
160 480 98.4 100 100
180 540 98.9 100 100
200 600 99.3 100 100
220 660 99.4 100 100
240 720 99.6 100 100
260 780 99.8 100 100
280 840 99.9 100 100
300 900 100 100 100

Table 5: Collusion Detection Accuracy (CDA) for Leduc
Hold’em for different number of games when played against
rule-based non-colluding agent (Player B1).

tween players and apply graph analysis techniques to de-
tect unusual patterns or structures to detect collusion in
round-robin iterated prisoner’s dilemma tournament. Unlike
our multi-agent setup with n > 2 agents, they focus on
multiple games played between two players. In (Mazrooei,
Archibald, and Bowling 2013), authors propose an auto-
matic collusion detection method applicable to only sequen-
tial games. They make use a of collusion table that captures
the effect of each player’s actions on the utility of all play-
ers using automatically learned value functions. They do not
consider the case where information is shared between the
colluding partners. (VanderKnyff et al. 2009) and (Laaso-
nen and Smed 2015) propose collusion detection specifically
for first-person shooter (FPS) games. (VanderKnyff et al.
2009) use principal component analysis to detect the collud-
ing players and (Laasonen and Smed 2015) use graph clus-
tering algorithms to detect soft-play in shooter games.

7 Conclusion

In this paper, we propose a novel method to detect collusion
in multi-agent games and provide proof of concept experi-
ments to show its effectiveness. Our experiments show that
our method can successfully detect collusion with high prob-
ability in perfect information simultaneous games and im-
perfect information sequential games. As the collusion gets
stronger, our method requires a lower number of samples
to successfully detect collusion. We also see some evidence
that the value of the net influence may indicate the strength
of collusion. The relationship between net influence and the
strength of collusion needs further investigation. In addition,
we anticipate that our method can be extended to other types
of multi-agent games, including fully observable sequential
games such as monopoly.

Acknowledgments
This research is supported, in part, by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under the contract num-
ber W911NF2020003. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA, AFRL, or
the U.S. Government. We thank our team members on this
project for all the discussions to develop this paper. Some
of the ideas in this paper are based on our learning from the
SAIL-ON meetings.

References
Allahbakhsh, M.; Ignjatovic, A.; Benatallah, B.; Beheshti,
S.-M.-R.; Bertino, E.; and Foo, N. 2013. Collusion detection
in online rating systems. In Asia-Pacific Web Conference,
196–207. Springer.
Arulkumaran, K.; Deisenroth, M. P.; Brundage, M.; and
Bharath, A. A. 2017. Deep reinforcement learning: A brief
survey. IEEE Signal Processing Magazine, 34(6): 26–38.
Cao, Y.; Li, Y.; Coleman, S.; Belatreche, A.; and McGin-
nity, T. M. 2016. Detecting Wash Trade in Financial Market
Using Digraphs and Dynamic Programming. IEEE Trans-
actions on Neural Networks and Learning Systems, 27(11):
2351–2363. Conference Name: IEEE Transactions on Neu-
ral Networks and Learning Systems.
Celli, A.; Ciccone, M.; Bongo, R.; and Gatti, N. 2019.
Coordination in adversarial sequential team games via
multi-agent deep reinforcement learning. arXiv preprint
arXiv:1912.07712.
Chen, P.; Sun, H.; Fang, Y.; and Liu, X. 2020. CONAN: A
framework for detecting and handling collusion in crowd-
sourcing. Information Sciences, 515: 44–63. Publisher: El-
sevier.
Hamilton, P. A. 2011. A Graph-Theoretic Approach to
Collusion Detection in Multi-Agent Systems. University of
Maryland, Baltimore County.
Hendricks, K.; and Porter, R. H. 1989. Collusion in auctions.
Annales d’Economie et de Statistique, 217–230. Publisher:
JSTOR.
Hespanhol, P.; and Aswani, A. 2020. Hypothesis Testing
Approach to Detecting Collusion in Competitive Environ-
ments. In Proceedings of the 13th EAI International Confer-
ence on Performance Evaluation Methodologies and Tools,
VALUETOOLS ’20, 35–40. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 978-1-4503-7646-4.
Islam, M. N.; Haque, S. R.; Alam, K. M.; and Tarikuzzaman,
M. 2009. An approach to improve collusion set detection us-
ing MCL algorithm. In 2009 12th International Conference
on Computers and Information Technology, 237–242. IEEE.
Jaques, N.; Lazaridou, A.; Hughes, E.; Gulcehre, C.; Ortega,
P.; Strouse, D.; Leibo, J. Z.; and De Freitas, N. 2019. Social
influence as intrinsic motivation for multi-agent deep rein-
forcement learning. In International Conference on Machine
Learning, 3040–3049. PMLR.

KhudaBukhsh, A. R.; Carbonell, J. G.; and Jansen, P. J.
2014. Detecting non-adversarial collusion in crowdsourc-
ing. In Second AAAI Conference on Human Computation
and Crowdsourcing.
Laasonen, J.; and Smed, J. 2015. Soft play detection in
shooter games using hit matrix analysis. In 2015 7th Interna-
tional Conference on Intelligent Technologies for Interactive
Entertainment (INTETAIN), 200–206. IEEE.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Machine learning
proceedings 1994, 157–163. Elsevier.
Madurawe, R. N.; Jayaweera, B. I.; Jayawickrama, T. D.;
Perera, I.; and Withanawasam, R. 2021. Collusion Set De-
tection within the Stock Market using Graph Clustering &
Anomaly Detection. In 2021 Moratuwa Engineering Re-
search Conference (MERCon), 450–455. IEEE.
Mazrooei, P.; Archibald, C.; and Bowling, M. 2013. Au-
tomating collusion detection in sequential games. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 27. Issue: 1.
Palshikar, G. K.; and Apte, M. M. 2008. Collusion set de-
tection using graph clustering. Data mining and knowledge
Discovery, 16(2): 135–164. Publisher: Springer.
Porter, R. H.; and Zona, J. D. 1993. Detection of bid rig-
ging in procurement auctions. Journal of political econ-
omy, 101(3): 518–538. Publisher: The University of Chicago
Press.
Schurter, K. 2017. Identification and inference in first-price
auctions with collusion. Penn State Economics Working Pa-
per.
Smed, J.; Knuutila, T.; and Hakonen, H. 2006. Can we pre-
vent collusion in multiplayer online games. In Proceedings
of the Ninth Scandinavian Conference on Artificial Intelli-
gence, volume 9.
Smed, J.; Knuutila, T.; and Hakonen, H. 2007. Towards
Swift and Accurate Collusion Detection. In GAMEON, 103–
107.
Southey, F.; Bowling, M. P.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2012. Bayes’ bluff: Oppo-
nent modelling in poker. arXiv preprint arXiv:1207.1411.
Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus,
K.; Aru, J.; Aru, J.; and Vicente, R. 2017. Multiagent coop-
eration and competition with deep reinforcement learning.
PloS one, 12(4): e0172395.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.
VanderKnyff, C. M.; Bethea, D. J.; Reiter, M.; and Whitton,
M. C. 2009. Statistical methods for user and team identifi-
cation in multiplayer games. tech. rep.
Wachs, J.; and Kertész, J. 2019. A network approach to car-
tel detection in public auction markets. Scientific reports,
9(1): 1–10.
Yampolskiy, R. V. 2008. Detecting and controlling cheating
in online poker. In 2008 5th IEEE Consumer Communica-
tions and Networking Conference, 848–853. IEEE.

Yan, J. 2003. Security design in online games. In 19th
Annual Computer Security Applications Conference, 2003.
Proceedings., 286–295. IEEE.
Yan, J. 2010. Collusion Detection in Online Bridge. In
Twenty-Fourth AAAI Conference on Artificial Intelligence.
Yan, J.; and Randell, B. 2005. A systematic classification
of cheating in online games. In Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for
games, 1–9.

